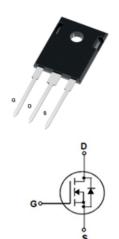


600V N-Channel MOSFET

General Description


This Power MOSFET is produced using advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

These devices are well suited for high efficiency

These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

20A, 600V, RDS(on)typ. = $0.36\Omega@VGS = 10 \text{ V}$ Advanced planar process Low gate charge minimize switching loss Fast switching 100% avalanche tested Improved dv/dt capability

Absolute Maximum Ratings Tc = 25 °C unless otherwise noted

Symbol	Parameter			JFHM20N60E	Units
VDSS	Drain – Source Voltage		600	V	
L	Drain Current	Continuous (Tc = 25 °C)		20*	А
lσ		Continuous (Tc = 100 °C)		13*	А
Ірм	Drain Current - Puls	sed	(Note 1)	60	А
VGSS	Gate – Source Voltage		±30	V	
EAS	Single Pulsed Avalanche Energy (Note 2)		545	mJ	
Iar	Avalanche Current (Note 1		(Note 1)	20	А
Ear	Repetitive Avalanche Energy (Note 1)		(Note 1)	25	mJ
dv/dt	Peak Diode Recovery	dv/dt	(Note 3)	5.0	V/ns
D.	Power Dissipation (Tc = 25 °C)		271	W	
Po	-Derate above 25 °C			2.17	w/°C
Тл,Тѕтс	Operating and Storage Temperature Range			-55 to +150	°C
т.	Maximum lead temperature for soldering purposes			200	°C
Tι	1/8" frome case for 5 seconds			300	

^{*}Drain current limited by maximum junction temperature.

JFHM20N60E

Thermal characteristics

Symbol	Parameter	JFHM20N60E	Units
Rejc	Thermal Resistance, Junction-to-Case	0.46	°C/W
Rөла	Thermal Resistance, Junction-to-Ambient	50	°C/W

Electrical Characteristics Tc = 25 °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Charact	eristics	•	•		•	
BVDSS	Drain – Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 uA	600			V
⊿BVoss/ ⊿TJ	Breakdown Voltage Temperature Coefficient	I _D = 250 uA, Referenced to 25° C		0.5		v/°C
	- 0	V _{DS} = 600 V, V _{GS} = 0 V			1	uA
Ioss Zei	Zero Gate Voltage Drain Current	V _{DS} = 480 V, Tc = 125 °C			10	uA
Igssf	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{GS} = 0 V			100	nA
Igssr	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{GS} = 0 V			-100	nA
On Characte	eristics	•				
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 uA	2.0		4.0	V
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} = 10 V, I _D = 10A		0.36	0.5	Ω
g FS	Forward Transconductance	V _{DS} = 40 V, I _D = 20 A (Note 4)		16		S
Dynamic Ch	aracteristics	•	•	•	•	
Ciss	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		2200		pF
Coss	Output Capacitance			1150		pF
Crss	Reverse Transfer Capacitance	1.0 MH2		72		pF
Switching C	haracteristics					
td(on)	Turn-On Delay Time	V 200 V I 20 0 A B		55		ns
tr	Turn-On Rise Time	V _{DS} = 300 V, I _D = 20.0 A , R _G		135		ns
td(off)	Turn-Off Delay Time	$= 25\Omega$, V _{GS} = 10 V (Note 4,5)		220		ns
t f	Turn-Off Fall Time	4,3 /		70		ns
Q_g	Total Gate Charge	V _{DS} = 480 V, I _D = 20.0 A V _{GS} =		64		nC
Q_{gs}	Gate-Source Charge	10 V (Note 4,5)		12		nC
Q_{gd}	Gate-Drain Charge	10 V (Note 4,3)		23		nC
Drain – Sou	rce Diode Characteristics and Maximum Rati	ngs				
ls	Maximum Continuous Drain-Source Diode Forward Current				20	Α
lsм	Maximum Pulsed Drain-Source Diode Forward Current				80	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 20.0 A			1.4	٧
trr	Reverse Recovery Time	V _{GS} = 0 V, I _S = 20.0 A		480		ns
Qrr	Reverse Recovery Charge	dl _F /dt = 100 A/us (Note 4)		5.1		uC

Notes

- 1. Repetitive Rating : Pulsed width limited by maximum junction temperature
- 2. L = 2.5mH , Ias = 20A, Vdd = 50V,Rg = 25 Ω , Starting TJ = 25 $^{\circ}\mathrm{C}$
- 3. IsD \leq 20.0A, di/dt \leq 200A/us, VDD \leq BVDSS, Starting TJ = 25°C
- 4. Pulsed Test : Pulsed width ≤300us, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature

Typical Characteristics

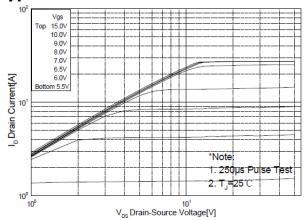


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

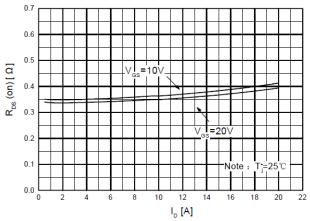


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

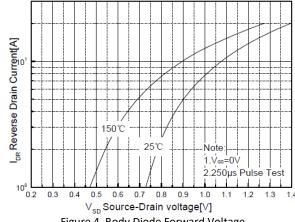


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

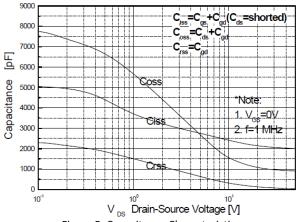


Figure 5. Capacitance Characteristics

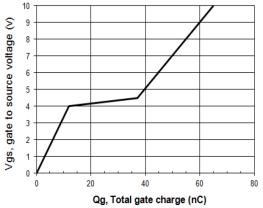


Figure 6. Gate Charge Characteristics

Typical Characteristics

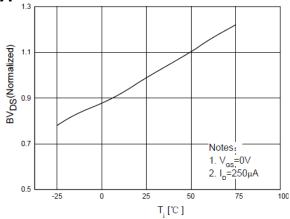


Figure 7. Breakdown Voltage Variation vs Temperature

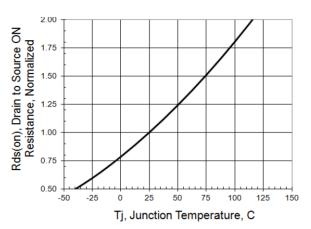


Figure 8. On-Resistance Variation vs Temperature

Figure 9-2. Maximum Safe Operating Area for JFAM20N60C

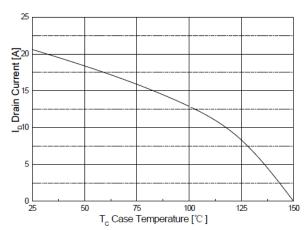
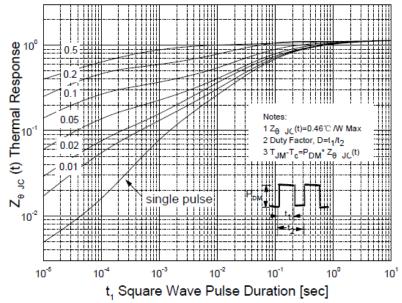
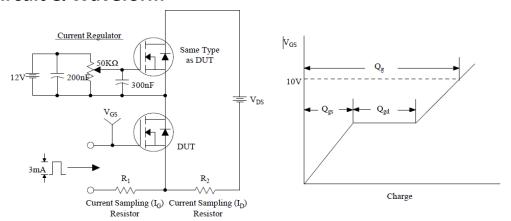
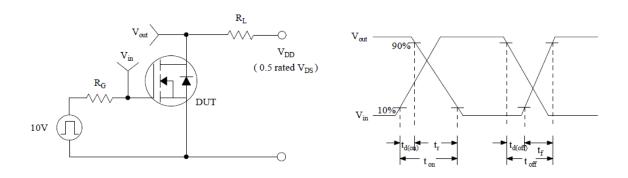
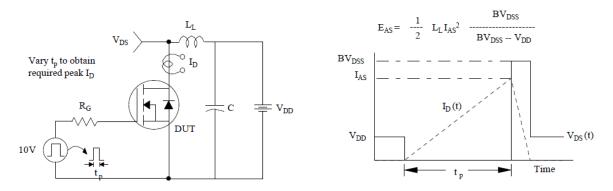


Figure 10. Maximum Drain Current vs Case Temperature

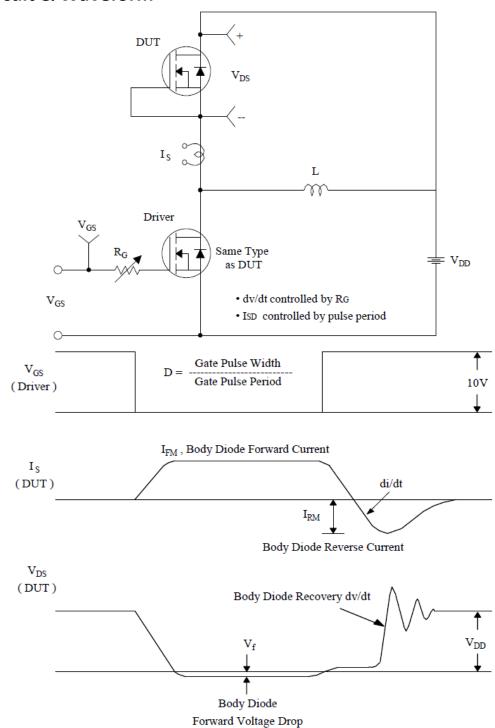
Typical Characteristics

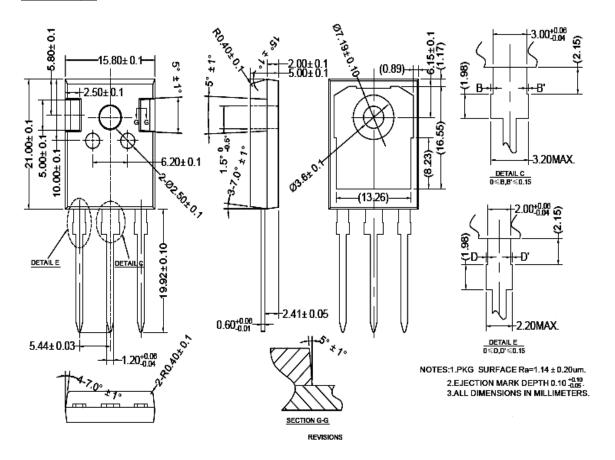

Figure 11-2. Transient Thermal Response Curve for JFHM20N60E


Test Circuit & Waveform

Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms


Test Circuit & Waveform

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Package

公差标注	公差值	表面粗糙度
0	±0.2	Ra3.2~6.3
0.0	±0.1	Ra1.6~3.2
0.00	±0.01	Ra0.8~1.6
0.000	±0.005	Ra0.4~0.8
0.0000	±0.002	Ra0.2~0.4

0≤D,D'≤0.15

NOTES:1.PKG SURFACE Ra=1.14 ± 0.20 um. 2.EJECTION MARK DEPTH 0.10 +0.05 3.ALL DIMENSIONS IN MILLIMETERS.

Disclaimers

JIAEN Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to JIAEN's terms and conditions supplied at the time of order acknowledgement.

JIAEN Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent JIAEN deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

JIAEN Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using JIAEN's components. To minimize risk, customers must provide adequate design and operating safeguards.

JIAEN Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in JIAEN's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of JIAEN's products with statements different from or beyond the parameters stated by JIAEN Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated JIAEN's product or service and is unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for any such statements.